Find a vector \vec{s} in the same direction as \vec{d} , such that $||\vec{s}|| = 4$. [a]

[b]

Write
$$\vec{g} = \langle -2, 34 \rangle$$
 as the sum of 2 vectors, one perpendicular to \vec{d} and one parallel to \vec{d} .

$$\vec{g} : \vec{d} \vec{d} = |80| \langle -6, 2 \rangle = |2| \langle -6, 2 \rangle = |\langle -12, 4 \rangle| \vec{0}$$

$$\langle -2, 34 \rangle - \langle -12, 4 \rangle = |\langle 10, 30 \rangle| \vec{0}$$

$$\langle -2, 34 \rangle = \langle -12, 4 \rangle + \langle 10, 30 \rangle| \vec{0}$$

If \vec{p} is a vector with magnitude 6 which makes an angle of 150° with \vec{d} , find the exact value of $\vec{p} \cdot \vec{d}$. No decimal answers allowed.

For the vectors \vec{u} and \vec{v} shown below, sketch the vector $3\vec{v} - \frac{1}{2}\vec{u}$.

SCORE: ____ / 2 PTS

GRADED BY ME

Three	forces	act	on	an	obi	ect.
1 111 00	101003	uct	OII	un	OU	CCt.

SCORE: ____/ 12 PTS

Force 1 has magnitude 7 newtons and direction angle 75°.

Force 2 has magnitude 10 newtons and direction angle 125°.

Force 3 has magnitude 3 newtons and direction angle 235°.

[a] Find the resultant of the three forces in component form.

[b] Find the magnitude and direction angle of the resultant.

The resultant of the three forces acted on the object to move the object from (4, -9) to (-1, -3), where all coordinates are [c] measured in meters. Find the work done, and give appropriate units for your answer.

$$J = \langle -1-4, -3--9 \rangle = \langle -5, 6 \rangle$$
 (1) (-5.6, 12.5) \(\langle -5, 6 \rangle = \langle -5, 6 \rangle = \langle -0 \) (1) (1)

[FILL IN THE BLANKS]

N THE BLANKS

You start at the origin in 3D and move 4 units down, 7 units backward, and 6 units right. You are now at the point with / 5 PTS

- [a] co-ordinates (-7, 6, -4), you are in octant (-7, 6, -4), and you are (-7, 6, -4), you are in octant (-7, 6, -4), you are in octant (-7, 6, -4), and you are (-7, 6, -4), you are in octant (-7, 6, -4), you are (-7, 6, -4), y
- If $\vec{a} \cdot \vec{b} = -3$, then the angle between \vec{a} and \vec{b} is [b]